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ABSTRACT

This paper is a study of the temperature and velocity fields in a melted
material layer. The Galerkin method as well as the finite difference
method are used together to reduce the calculation time and the
complexity of the treated problem. The paper is applying the finite

difference/Galerkin method for the Benard-Marangoni canvection case.

1. Introduction
The temperature field in a melted material layer
{a fluid layer) is a subject of study intensively
treated by researchers studying not only the
theoretical aspects of heat transfer processes
but alse the industrial applications of them
[1+9]. The presence of convection in a melted
material layer will affect its homogeneity and,
consequently, the physical and mechanical
properties of the workpiece as well as its
performance.
This paper is analyzing the case of a fluid layer
with a small height, a situation where the
surface tension is the main mechanism that is
triggering the convection. This case is known in
the literature as the Bénard-Marangoni
convection.
Previous papers treated Bénard-Marangoni
convection using the linear stability analysis
method[1,2], the bifurcation analysis [10,11],
the energy stability analysis, e.a. The
advantages of each method related to the
previous ones were related to the calculus
simplicity and the analytical applicability.
This new method [12, 13, 14] is very simple
and with less calculation effort compared to the
previous ones. It uses a finite difference
decomposition for vertical direction and
Galerkin method {(decomposition) for horizontal
direction. !ts application to the problem of
Bénard-Marangoni convection is underlying
oace again the simplicity and efficiency of this
method. 1t also give a new possibility of study
of Bénard-Marangoni convection in a fluid
layer and, further, for the active control of this
convection type.
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2. Governing equations
The mass, momentum and energy conservation
equations for the fluid layer are
(Chandrasekhar, 1981; Bejan, 1984):

Vey'=0 ()
’ 1
gv—r+v'-Vv’:——Vp'—igf+—}i72v'(2)
ot Po PO PO
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e, | =— v - VT |=kV T 3

where v is the velocity field in the horizontsl
direction (y), w is the velocity field in the
vertical direction (z), t° is time , k is the fluid
thermal conductivity, y is the dynamic
viscosity, ¢, is the specific heat, p is the fluid

ciensity at temperature T('), py is the fluid

density at reference temperature Tb, p is

pressure, g is the gravitational acceleration.
1 am using the following non-dimensional

variables:
L, ST 2
v=—y, w="w,T= p= P
o o qL avpg
k {4)
y' z' a |,
=2, z=",t=—1t
Y L L LZ



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

for velocity, temperature, pressure, length and
time. Here, L is the fluid layer thickness o is
the fluid layer thermal diffusivity, vis the
kinematics viscosity, q is the heat flux applied
at the lower boundary.

The Boussinesq approximation imposes:

p=po(l =BT ~1p)) (5)

where B is the fluid volumetric expansion
coefficient. The equations (4), (5) and the
system of equations (1) + (3), lead to the non-
dimensional conservation equations:

Vv=0 (6)
[%w-vvJ=-Vp*—Raﬁ+v2v %
o VT =iv2T (8)
ot
where p'=p-phydwsmic, Rayleigh  number
4
Ra= Pegl , Prandtl number Pr= A
kov k

Equation (7) can be written as a function of

vorticity §{=-—— @ in the following manrer:
& &
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In order to establish the equilibrium
temperature field, T am considering Fourier
cosine series decomposition for  the
temperature filed (T), the vertical (w) and
hortzontal (v) velocity fields [13,14]:

N
T(y,z):Tg(z)-rﬁ > Tp(z)cos(agy) (10)

m=/
N
w(y,2)=v2 Y wp(z)cos(agy) (11)
m=]
N
Wy, 2) =2 Y vm(z)cos(ayy) (12)
m=1]
2nk

where | ay =T,k=1...M, D=38/8zand A

is the ratio fluid length/height.
The orthogonal basis of the Galerkin procedure

is: J \/Esin(amy) \/Ecos(amy).
Next, the equations (10+12) are substituted in
the non-dimensional form of conservation
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equations (6-8). Averaging equation (6) over y
direction, we obtain:

Vyp = —— . (12)

Averaging equation (8) over y we obtain:

K
Dty = Y (Dw, T, +w,DT,) (13)
m=]
Multiplying equation (8) with \/Ecos(amy)

and averaging over y the following results were
cbtained:

2 2
D Tm _(‘gw,?m)DTm _'[am _%DWZm ]Tm

= DTy +E(275,,DW,y + DTy w,, )+ Ef

with (14)
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Similarlty, multiplyving equation (9} with

\/Esin(amy) and averaging over y, the modal
velocity equation are:

D4Wm + (¢0W2m )D3W2m + [%DWzm —2(1_,2,;]

2 2 2 2
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For the finite difference procedure, I used
centered finite differences as indicated by
McDonough and Catton [14]:

T) I".H'JI T&—f
- (18}
dz i,

a*r| it _oriar!

ary = 19

dz? Az? (19
d? 2473
d*w| w2 gt w2
dz4 I Az4

(21)

The equations {13), (14) and (16) were meshed
using equations (18:21). Consequently, we
have to solve three systems of equations. Each
system of equation has M unknowns, the
number of points that I consider for the z
(vertical) decomposition; the matrices are band
(3 or 5 elements wide) matrices and a Gaussian
elimination routine will be used.

In order to solve the systems of equations, the
following boundary conditions were used:

— the no slip and no penetration upper and
lower boundary conditions:

W =w
n »
z={} W2

(22)

— the upper boundary heat transfer condition:

DT, +BiTm=0‘ 23)
£~

— the condition for surface tension driven

convection:

Dzwm = Ma-a* (24)

bid
where & :_k- is the wave number a=2R8/ A

3. Numerical results
The numerical procedure was described by
Mc¢Donoughtand Catton [14], The initial guess
wa=00: Tp=I1-z+sin(2n/1)/100

Was!
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— oF s \ .
Ty =sin(az)/ Qpm, After each iteration, the

following solution convergence criteria is
verified:
Frew _ To!d <g
max
new old
T -T, <E (25)
max
1
w}r}zﬁew :;id‘ <&
L o

_5 . .
where €=10 " From one iteration to the other
a relaxation procedure was used:

T" < 3TPW 1 (1-8 )12 26)

Throughout the paper §=0.4, N=4, M=100, Biot
number Bi=1.0, Marangoni number Ma=200.0,
Prandtl number Pr=6.7, After 3 iterations the
temperature modal values, Tw, are presented in
figures 1+4,
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Fig.5 Temperature field for
Bi=1.0, Ma=200.0, Pr=6.7, A=2.464
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Fig.6 Vorticity field for
Bi=1.0, Ma=200.0, Pr=6.7, ,=2.464.
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Figurea 5 and 6 are presenting the temperature and
the vorticity fields for the parameters presented
above: Bi=1.0, Ma=200.0, Pr=6.7, 3=2.464.

The method is calculating iteratively the modal
components of temperature and velocity fileds, Tu,
Wm, Vm, m=1+4, and in the end is establishing the
values of the temperature and velocity fields using
Fourier transformation, equations (10+12).

Related to previous results [15,16], an very important
advantage of this method is that we do not need to
store the physical components of the temperature and
velocity fields during calculation process and,
conseguently, we can have more iteration points and a
higher precision for the results. An other advantage is
the simplicity of the software needed for solving this
problem, the decrease both of the calculation
operations needed to be done and of the computation
time.

The advantages presented above are indicating that
this method could be used with success for the active
control of Bénard-Marangoni convection. This
method not only is giving us the whole picture of the
convection process but alse it is a very fast one
having in view that finding and then tracking the
solutions can be done very easy.
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METODA "DIFERENTE FINITE/GALERKIN”
PENTRU CAMPUL TERMIC
AL UNUI STRAT DE MATERIAL TOPIT

Rezumat

Aceastd lucrare este un studiu al cdmpului termic §i de viteze intr-un
strat de material topit. Metoda Galerkin §i metoda diferengelor finite sunt
Jolosite impreund pentru reducerea timpului de calcul §i a complexitatii
problemei studiate. Lucrarea aplicd metoda “diferente finite/Galerkin”
pentru studiul convectiei Bénard-Marangoni.

SOLUTION DE "DIFFERENCE FINIE/GALERKIN"
POUR LA TEMPERATURE
D’UNE COUCHE DE MATERIELLE FONDUE

Résumé

Cet article est une étude des zones de la température et de vitesse dans une
couche matérielle fondue. La méthode de Galerkin aussi bien que la méthode finie
de différence sont employées ensemble pour réduire lu période de calcul et la
complexité du probléme fraité. Le papier appligue la méthode finie de
difference/Galerkin pour le cas de convection de Benard-Marangon,
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